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1. INTRODUCTION

A decade ago some facts and fallacies in digital simulation were discussed in an

interesting article [ I]. Some of the facts appear to be fallacies as that author had
warned might be the case. The fallacies arose, in part, because of premature use of
the general recurrence; that is, improper incorporation of the initial conditions. It

is, of course, unfair to "sharp shoot" after a decade, but some of the "facts" (fallacies)
are still present in today's z-transform literature.

These and other questions were addressed in an earlier report (21 documenting

the results of an initial investigation.

Several suggestions were made as to avenues for further possible development.
They were as follows:

a) Place z-transforms on a firm foundation using distribution theory,

b) Determine when modified z-transforms and/ or tunable convolution are
advantageous and in what combination. This would include the use of higher order
holds.

c) Analyze the effects of tuning for other inputs and other transfer functions.

Some progress has been made, and, though in no way complete at this time, it
was felt that the results to date were worth reporting if only to stimulate further

interest.

There is the story of a physicist and a mathematician in an airplane which flew

over a flock of sheep, all white save one, who was black. The physicist proceeded to

theorize about the number of black sheep in the universe. The mathematician knew

there was one flock with a sheep who was black ON TOP. An engineer would
probably choose to ignore the color of the sheep since it would have no effect on the

mutton. This author is a physicist.

2. SOME PRELIMINARIES

In this section certain details as to the notation used and some conjectures
concerning the use of distributions in z-transforms will be presented.
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That the Laplace transform of the Dirac delta* is a constant and the Laplace
transform of the n-th derivative of the Dirac delta Is s" (see Appendixes A and B)
would certainly seem to indicate an intimate connection between Laplace transforms
and distribution theory.

For reasons which will become apparent, the Laplace transform will be defined as
(31,

L(t(t)) - f f(t) u(t) e-st dt (1)

where u(t) is the Heaviside unit step (whose derivative is the Dirac delta).

Of course Equation (1) readily reduces to

00

f(s) = f f(t) e-Stdt (2)

Note that the introduction of the unit step, Equation (1), remov i the need for
defining the behavior of "f(t)" prior to "t" equal zero. The lower lim. of integration
in Equation (2) is contained in the unit step in Equation (1). For example, consider
convolution:

O.D

g(t) * f(t)= f g(t) u(t) f(i-t) u(1-t) dt, (3)

Co

= f g(t) f(-t) u(t) u(r-t) dt. (4)

The term, "u(t) u(r-t)," will be recognized as the unit pulse from 0 to r-.

Equation (4) becomes
"1

g(t) * f(t) - f g(t) f(t-t) dt.
0

(5)
*The )irac delta distribution is not a function. Dirac to distinguish it from the Kroneker delta.
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It should be noted that the Dirac delta is the unity element in convolution,

g(t) 6(1-t) dt - go.(6)

For a discussion of the convolution of distributions, see Kecs and Teodorescu (4].

The Dirac delta may also be thought of as a sampler

fg(t) 6(nT-t) dt = g(nT) (7)

If one has the sequence 151

f Wt f(t) 5(nT'-t) (8)
n- 0

its Laplace transform is

n-0

Taking

z e-S (10)

one has

n-0

4 7



The z-transform may be thought of as a discrete Laplace transform, that is. a
transformation to the sccqucncy domain. The notation

Z(f(s)l L[f (t)1 (12)

will be used in the following. To be consistent, let

Zff(s)] = f fT(nT) ti(nT) z (13)

and

Zjf(t)) = f(t) 3(n'l'-t) (14)

Since

g(s) f(s) = L[g(t) W (t)] (15)

it follows that

Zig(s) f(z)j

Szil u(nT) f [g(nT-t) u(nT-t) f(kT) u(t) 6(k-t)] dt

'n=-cx> COo kff-0

(16)

From the properties of the Dirac delta, [6,71 and Appendix B,

8
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(17.z g (iFr-kT) f (kr) (17)

* gtnr-kT) z t(kT) z (18)
n-O) ,<(0

which is the Cauchy product of power series

= g(nT)z ti I (kT ) , (19)t n.=o I k=U "

= g(z) t(z), (20)

the Ragazzini-Zadeh identity.

Ztg(s) f (S)J (z)f(z)

but unfortunately

([gts) f(s) # g(z) f(z)

that is

g(z) # y(z),

and therein lies the difficulty in applying z-transforms to continuous systems, that
is, the digital simulation of continuous systems.

3. MEAN VALUE CONVOLUTION

A very useful relationship would be the solution of

Zig(s) f(s)] - I z n u(nT) f g(t) u(t) f(nT-t) u(nT-t) dt (21)
n ---
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where both "g(t)" and "A~t)" are functions. There are no Dirac deltas to "remove"
the integral as was the case with the Ragazzini-Zadeh identity.

The mean value theorem of the integral calculus [5] guarantees there is some "k

such that

(k+1)T

f g(t) f(nT-t) dt = T g(kT+ 6 kT) f(nT-kT-6 T) (22)

kT

and Equation (21) may be rewritten

n-i
z T g(kT+6 I-.T) f(nT.-kT- 6 kT) (23)

n=O k0O

Since "&k is most likely different for each "k" it would be difficult to proceed.

Assuming

k= 6(24)

that is. "45k" is the same for all "W', one has

00 n-1
xznI T g(kT-6T) f(nT-kT-6T) (25)

n0O k=O

and as before

OD -1k nk
Ty g(kT+6T) z f(nT-kT-6T) z" (26)

n-0 k=O

One problem, the sum is to "n - I" not "n" and to obtain the form of the Cauchy

product a term must be added and subtracted,
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'~ g~k+6T) H f (,vT-Sr) z-f (-6T (27)

and, finally, from the definition of the modified z-transform

ZIg( .) f ()l T g(z,)If(z.,-6) - f- T)i (28)

which will be referred to as Mean Value Convolution, MVC for short.

Since the assumption. Equation (24). is suspect, some checks are warranted.
Consider the case where

s .(29)

and

- (30)

From Equation (28) and Appendix A

1z (31)

Checking against Appendix A for I /s' Equation (3 1) is found to be exact. For g(s) the
same and

111



f(s). __

(32)

Equation (28) and Appendix A yield

S -(33)

which simplifies to

T z (tt )- nzj

Z) 3 (34)

For a small time step. one would suspect that

6. 
(35)

would be reasonable and since

(36)

one would have

2
2(1 -z) 3  

(37)

which for I/s' is exact.
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Interchanging the roles of g(s) and f(s) in Equation (28), one has

T (T +(~ [ ] (38)G- Z

and simplifying

T'2z (nj+(l :au) ) (39)
(1- z) 3

In this case

n = 6= 2(40)

and Equation (39) becomes

T2z (1+z) (41)
2(1 - z)

which for I /s' is again exact.

That the above checks are exact is not surprising since the first would correspond

to integration of a constant, and the second to integration of a ramp or the double

integration of a constant. For these cases

62
k = (42)

is what one would expect.

So far, so good, but I / s4 presents difficulties whose discussion will be deferred until
a solution to the difficulty is available in a later section.
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4. R-K CONVOLUTION

In the previous section the mean value theorem was invoked to "remove" the
integral. In this section the approach will be to "numerically" integrate. Since the
approach of this report is that of z-transforms a brief summary of integrators with
holds is in order. Consult Jury 161. Smith [51 or Rosko 171 for details.

Z[K(s) f(s) - y(z) f(z) (4:3)

may be approximated by

.(l (s)\
Z [g (S) t" €-)] " g(z) "(44)

Z 1

that is

Y60 = S(Z) F( 1+ (45)

where "n" is the order of the hold.

For an integrator, "f(s) = I/s", and a zero order hold, "n 0", one has

(Z) ) W T z v.(z) (46)

14



Eular integration or the Left Riemann Sum.

For a first order hold, "n = I",

g2(-z (z) +zg(z) (47)
I~) 1 (Tz) 2 2(1 - z)

trapezoidal integration.

For a second order hold, "n = 2",

Z(4) (T3 (1+ 4z + z2
g(Z) / \60I_- T i + 4z + z g(Z)

Z(-) (T 2 Z(1; 4) gZ 3 G1+ z) (1-z)

Simpson's rule.

Smith's "tunable" integrators [51 may be obtained by using the modified z-
transform. The "tunable" integrators for zero and first order holds will be found in
Table I.

One may proceed to higher order holds (Table 1), but these integrators do not

appear practical.

A digression:

Of course, holds may be used with plants other than integrators; for example, a

single pole filter,

f(s) s __. (49)
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A single pole filter and a zero order hold, "n = 0", yield

g(z) ( T z g(z) (50)
Z(i) a(l-z e-aT)

If one chooses to implement Figure 1,

g (S) Hol
T T

Figure 1. An Integrator with feedback.

an integrator with feedback for a zero order hold, one would have

(s"() T z g(z) (51)
\ -" 1-z(1-aT)

which would amount to using a (I/0) Pade' approximation for e - T,

-aT
e -1-aT, (52)

in Equation (50).

Dividing Equation (51) by (50) one has the ratio*

aT 1_-aT(aT )1-ze) aT

*Subtract one and multiply by one hundred for percnt emr.
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Applying the final value theorem, 1 (n -.oc. the ratio is one, as desired, but
applying the initial value theorem, / -0 (n-0). one has the ratio

Since "a" is given, "T" must be chosen so that Equation (52) is as near one as
desired, or use Equation (50) instead.

For a single pole filter and a first order hold one has

aT 1)-aT -aT -aT
-(z) - LY,,-,' -1) +- (--, --j-'. ) 7(1-- (53)

,-1 - -aT )

It is common practice in digital simulation to follow the analog computer

practice of reducing problems to interconnected single integrator'. This is not
necessary nor may it be desirable, but enough of this digression.

In the following, several integrators (Table 1) will be used to find a,-)proximate
solutions to Equation (21). There is some repetition of earlier material 121 which is

included for completeness.

Using Eular integration, Equation (46), in Equation (21) one has*

A" n-1 (k+) T , n-
i z" Y" f g(r) f(n'r-i) it = T' ) T g(kT) f(nT-kT) (54)

1n)O k-0 kT n=O k=O

As before, adding and substracting...

= ' Tz in g k() f(nT-kT)-g(nT)f 0  (55)
11=0 k-0

*How recurrences are developed is treated in the sample problem sction.

18



The Cauchy product...,

= T W) zk f(nT) zj -T fO g(nT) zn (56)

and from the definition of the z-transform,

Z [(s) f(s)]= T g(z) (f(z)-f , (57)

Eular convolution.

If the modified z-transform is used (2], for a zero order hold one has

oo n-1
I z T (n g(nT+T) f(nT-kT-T) + (1-l) g(nT) f(nT-kT)1 (58)
n=O k=O

and then, as above,

co n Znfrio(1)
T zn I g(kT) f(nT-kT)- T go f(a) + (l-2.) f Z n g(nT
n=O kf[O n-O n=O

(59)

and finally,

Z[g(s) f(s)] T g(z) f(z)-T[Tg o f(z) + (i-n) g(z) f] (60)

19



Eular tunable convolution.

Proceeding on with the trapezoidal integrator,

Tn-1
Z 2 [g(kT+T) f(nT-kT-t) + g(kT) f(nT-kT)] (61)

n.0 k0O

and after manipulating indicies

x T g(kT) f(nT-kT) - g0f(nT) + g(nT) f 1(62)

and rearranging

00 nk n-k

TY g(kT) z f(nT-kT)z
n-0 k=O

T~ [o iz n g WT) + goiz f (nT (63)

and finally.

Z [ g(s) f (s)] T f (z) g (z) -[f g (Z) + g f (Z) 1 (64)

trapezoidal convolution [7,8,91. Equation (64) may also be written

Z [g ()f(s)] 1 ( (g (z) - g) f (z) +g (Z) (f (z) - f0)] (65)

2 0



For the modified z-transform and first order hold (Table 1) one has

jz ~ I ' g(kT+2TI) f (n1-k1*-2T')
n=() k=0) I

+ (1 + 2ri - 2rK 2) g (kT+T) f (nT-kT-T) + ( 1-2 r + i2 ) g(kt) f(nT-kT]

(66)

Changing summing indices

nj,,2'+] 2
z i g~kT)f(nT-kT) + (1+1j2y )Y+kT ~n-T

11- k=-' k-i

n-i
+(1-21j+rj 2 )j g(kT) f (Tk) (67)

k-O

and adding and subtracting the necessary terms,

, nn12
TY z' Y g(kT) f(nT-kT) - ( + 2n + q 2g f(nT)
n=U (k=U-(1Og

1 2r ~ T

+ [gn2  +T f(-T) -g(T) f(nT-T)1I

(68)
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From the definition of the z-trangform (and the Cauchy product), finally,

Zlgls) f(s)l T 9(7) t (.) - ' 2(0 + 2 ri - 11")go f W)

+ T2 [g z .I f() g(T) f z,1) . (69)

Trapezoidal tunable convolution.

Simpson's rule (48),

3(1 +z) (1 - z)

presents indexing problems since the recurrence would be

X~ = X + :Ik + 4ki + k(70)

Also, Simpson's rule is known to be sensitive to noise [6,10]. Another form, used in
third order RungeKutta integration, is

T +4 (1/2z+ (71)

whose recurrence is

Xn =X + ni + 4i n1/2+ n1 (72)
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Equation (71) may be factored into

3 k1--- z 3 \1 -z7 /(3

that is,

i - 6- + i. )J+ 2 T (74)2n .n- 1 -3 2 .n :.n-1 3 ' n-1/2

Note that Equations (73) and (74) are a linear combination of trapezoidal
integration, and Mean Value integration with 6 = i 2. Therefore R-K convolution isa
linear combination of trapeioidal convolution and Mean Value Convolution,

Z [g(s) r(s)] g(Z) - go) f(z)

+ 4 g(z,1/2) If(z,-1/2)- f(-T/2)]

+ g(z) (f(z) - f)] (75)

S. ANALYSIS OF ERRORS

Earlier the ratio between the zero order hold integrator with feedback and the
zero order hold single pole filter was taken to compare these different simulation
approaches, Equation (51). The input was not specified.

Now the ratio of the convolution approximation to the exact solution will be
taken for given inputs. The accuracy is highly dependent upon the input.

Checks for the various convolution approximations, Table 2, similar to those
done for MVC, Equations (29) through (42), will be found in Table 3. The ratios to
the exact z-transform will be found in Table 4.

23



TABLE 2. CONVOLUTION APPROXIMATIONS FOR Z[g (a) I s)

M.V. C T 9(Z,6) [f (z, -6) - f (-6T)]I

E. C. T g (z) If (Z) - f 0]

E. T.C. 1 [g(z) - 2 T) f (Z) + g(z) (f (z) - 2 (1-ni) f)

T. 1 [(g(,) - g.) f(z) + g(z) (f(z) - fo)]

T. T.C. -(1+2r1-n') g0] f (Z) + 9(z) [f (Z) - (1-2rri)]

+ ri2[g(z,1) f(-T)- g(T) f(z,-1)] I

R-KC. (gz- f(z) + 4g(z,1/2) fz,/)-(T1]+()(fZ)-f0)

TABLE 3. CHECKS OF THE CONVOLUTION APPROXIMATIONS FOR 1(s) =AND

g(t) A CONSTANT, RAMP OR PARABOLA

2 3 q 2

m~~.Tz T 2z(l+z) T z(1+6z+z )
M..(1-Z) 2  2(1-z) 3  8 (i-z) 4

EC zT2Z2 Tz(1+z)
E..(1-z) 2  (1-i) 3  2 (1-i) 4

T.C. Tz T 2z(1+z) T 3z(1+2z+z2 )
(1-Z) 2  2 (1-z) 3  4 (1-0)4

RK.Ti T 2Z(1+Z) T 3z(1+4z+z2)
RK.(1-Z) 2  2 (1-Z) 3 6 (1-z) 4

24



TABLE 4. RATIOS OF APPROXIMATE SOLUTION TO THE EXACT FOR A
CONSTANT. RAMP AND PARABOLIC INPUT TO A SINGLE
INTEGRATOR

N.V-C ts) I

T. C.) ki )7

I+ 4z + I

kit ~ -

I 1wc uto (kit lukld tie Iumotmol me.tm miltnM vc ta lon.T o z 0 the ratio
\%otuld he teio ot tahe a411111) and paawaholac inputs. 1I (ihe **t in the nuivneraloa is

in~terprtetd na it sahift, the ratious wo~uld he two and three,~ reaptetively. 'rhe
approxiantion for the ramp waaa dettermned~~ with

~] ~ (76)

Initerchantging gtaa) and fAs) in Equation (57) one haui

- - (77)

and the ratio would be

25i



But recalling that

T (79)

is Rectangular integration, one may conclude the difference between Eular
integration and rectangular integration, the Right Riemann Sum, is a time step.

This difficulty arises because of all the approximations in Table 2, only Eular

Convolution lacks symmetry, and convolution should be symmetric.

One could proceed to higher powers of time for inputs, but b ing only able to

determine the ratio at the initial time is not very enlightening. A time step by time

step approach is possible 121 but does not seem practical.

Fortunately some transcendental functions work very well as inputs for ratio

analysis. For example, consider an exponential input to an inte, rator. That is,

f (s) (80)

-at(g(t) =a e (81)

and, it follows that

g~ (82)

taking the z-transform of Equations (80) and (82),

f(z) - (83)

1-z

26



K(Z) =(84)

1 v - aT

and substituting into Equation (57) yields

1)' (1 ~z~ea)(6
\z z - z___ _aT _8)

for Eular Convolution.

Taking the z-transform of

) (I -aT

_____ ) (86)
\s~~aJ(Z) (I -zT)

yields the exact solution.

Taking the ratio of Equation (85) and (86),

aT (87)
1 -at

Note that no ..z's" remain.

When this occurs, the assumption,

= -6 (24)

appears quite reasonable since the ratio does not depend upon the time step 121.

Factoring out an "e-aT/,," in the denominator, Equation (87) becomes
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aT e a T/
2

(eaT/2 - aT/2) (88)

and, since,

aT /2 (9
e = sinh aT/2 + cosh aT/2 (89)

and

sinh aT/2 1/2 (eaT/2 -aT/2 )12- e -T2(90)

after a few manipulations one has

(aT /2) [ctnh (aT/2) + 1] , (91)

the ratio for an exponential input to an Eular integrator.

If "a" is imaginary, that is,

a - i W (92)

Equation (91) becomes

(wT/2) [ctn (wT/2) + i] (93)
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Since this "ratio" is complex, one must determine its amplitude and phase.
Multiplying Equation (93) by its complex conjugate and taking the square root, one
has

(wAT/2) [ctn2(wT/2)+ 111/2 (94)

which readily simplifies to

(wT/2) (95)
sin(wT/2)

for the amplitude ratio of a sine wave input to an Eular integrator.

Dividing the imaginary part by the real in Equation (93), and taking the arc

tangent yields

(wT/2) (96)

for the phase error of a sine wave input to a Eular integrator.

One would proceed in a similar manner for the other integrators of interest; see
Reference 2 (6,and 10) for details. The results are summarized in Tables 5 and 6.

For a low frequency sine wave input the Eular integrator has half the error of the

Trapezoidal integrator, but unfortunately it has a linear phase error. For 6 = I/2,
MVC does not have the phase error and since there would be no advantage to
choosing a "B" other than one half, it is worthy of consideration. Also,the ratio of

MVC error to TC error is 1:2, and the errors are of opposite sign which serves to
explain their mixture in R-KC.

The linear phase error of EC and/or the fact that MVC samples at mid interval

for 6 = 1/2 may explain the observation that in some simulations the difference
between the simulation and exact answer is a shift in time.
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TABLE S. ACCURACY FOR AN EXPONENTIAL INPUT TO AN INTEGRATOR

TMANSFORI4 RA It) KII

I- ZI -z eAT)

N.y.C. TI j. _k j2.I)~~ + T1. 
6

a-aT siiih .I dT/ )

1.C. az(TI cndT211I 4 al 4 (aT)?
(I-Z)(I- ze AT

E.T.C. AT kh(I - )e (d'/ 2 )(Vtnh (aT/2 I + 2(, 6fl + (1 I, +
-)AT 12

(aTIZ I(4. + T) (aT/2') ctith ( aT/2 I+

Simpson _____ t. cosha) 0

KK. AT(I + 4e.-T2+e& )z (AT) 2 , osh AT AA)
6(1-2)(1-ge - 6 sinh (aT/2)
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TABLE 6. ACCURACY FOR A SINE WAVE INPUT TO AN INTEGRATOR

RATlO PHASE

Exact 0

M.nV.C. (toT/2) 1 + lT) (1/2 - 6) wTsin ( wT/2 )24

E.C. (toT/2) 1 + (T) wT/2
sin (wT2) 24

TC. (twT/2) ctn(wT/2 ) 1 2

/w• 2 cg o(w)

Simpson \ (2 + cos tT) 1+ 45 03 sin T 45

R-C T2 + cos (wT/2)+ Sa4 iw)0
6 sin (wT/2) 720
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Though it is unwise to sample at the Shannon limit of two samples per cycle, it is
instructive to examine the ratios and phases at that limit, Table 8. The noisy
qualities of the Simpson integrator are apparent. Since R-KC takes twice as many
samples as Simpson. it has no difficulty at the limit; its ratio is two thirds that of MVC
since TC's is zero. Trapezoidal integration appears particularly bad at the limit since it
might stabilize an otherwise unstable system. The last entry was tuned [2] for unity
ratio at the limit but it has a ninety degree phase error. The implications in determining
gain and phase margins are obvious.

TABLE 8. ACCURACY AT THE SHANNON LIMIT (wT = 7r)

RATIO PHASE

Exact 1 (0 dB) 0

M.V.C. = 1.57... (2 dB) (1/2 - 6)

TTT

E.C. - = 1.57.,. (2 dB)2 2

T.C. 0 (- 'dB) 0

Simpson W dB) 0

R-KC.= 1.05... (0.2 dB) 0

E.T.C. 2 + 7T

E.T.C. 1.28 (1 dB) + --
6 ( )1/2 2
6- 6

E.T.C. 1 (0 dB) +
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6. SOME SAMPLE PROBLEMS

Now to the meat of the subject, the numerical solution of differential equations. To
incorporate non-zero initial conditions, one should proceed from the differential

equation using

n-1 -- IX

L[X- Isn X(s) - I n--i CM (97)

To attempt to proceed directly from the transfer function is difficult because to obtain
the transfer function, the ratio of output to input, it was assul.led that the initial
conditions were all zero.

A. Single Integration

For "n = 1" Equation (97) becomes

X(s) - s X(s) - X (98)
0

and solving for "X(s)" one has

X(s) - *(s) + 0 (99)
S S

Taking the z-transform of Equation (99),

X(z) - Z~()+ x0 Z(I) (100)

There is no difficulty in taking the z-transform of the initial conditions since they
are constants in the frequency domain; they are multiplied by Dirac deltas in the

time domain [23.
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The input, "X(s)", is another matter and requires the application of the
convolution approximations, Table 2.

Now to develop the recurrence for MVC, Table 9,

(-z) X(z) = T z X(z,1/2) + X (101)0

TABLE 9. CONVOLUTION APPROXIMATIONS FOR SINGLE INTEGRATION

(X (s

M.V.C. T X(z, 1/2) " 1

E.C. (1 -z) [ or T k(z)

E.T.C. TIn + (1-r)z] X(z) - Tr o
1-z 1-z

T.C. A+ (LtZ)j - T X2 T-z 2 1-z

R-KC. 6(1z) [.*(z) + 4 (i(z, - 1/2)- X(-T/2))4 (X(z) X)]

and substituting the definition of the (modified) z-transform, one has

SX(nT) zn - X(nT) z T (nT+T) zn+l + X (102)
n-0 nffO 2o
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Now the important step, equating coefficients of like powers of 'T', one has

=O. ( (103)

Xn Xn + T ,n1/ n>O (104)

It is important to note that the general recurrence, Equation (104), does not apply at
nO'0.

For EC there are two possibilities because of the lack of symmetry.

(1-z) X(z) =T (X(z)-k I + X (105)
0 0

becomes

00 zn zr1~+1 00z+X(161 X (nT)z X (nT) z =TJ k(nT) 0~+X(~
n-0 n=10

and equating coefficients of like powers of "z",

X0 X0 (107)

Xn X n-1 + T knn>0 (108)

Rectangular Integration!

For

(I -z) X (z) - T z(z) + X , (109)
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n+1 (II0

) X(nT) z - X(nl) z = T . X(nT) zn + l + Xo (110)
no n=O

and, ... , finally,

x = x (111)

Xn = Xn- + T Xn-1, n>O (112)

'\Eular Integration.

Proceeding in a similar manner would produce Table 10. It might appear at first

that MVC and R-KC are not symmetrical since, if the rolls of "g(s)" and "f(s)" are
interchanged, one would have

T [X(z - 1/2) - X(T/2)] (113)
1-z

and

T

6(1-z) [(k(z) - 90) + 4z X(z,1/2) + z X(z)] , (114)

respectively, but these approximations lead to the same recurrences found in

Table '9.

Of course, these recurrences, Table 10, are those used to develop the convolution

approximations in an earlier section, and are not unexpected. At least they
demonstrate consistency.
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TABLE 10. RECURRENCES FOR SINGLE INTEGRATION

Xo = Xo

M.V.C. Xn = Xn_ 1 + T kn-l/2

E.C. Xn = Xn_ 1 + T Xn

E.T.C. Xn = Xn 1 + T[rj X + (i-rn) X 1 1

T.C. X =X + 1(X + k
n n-1 2 n n-1

T.T.C Xn =Xn i + T I-2ri) X+ (l+2r) Xn1+ r]2(X _ 2k 
+ Xk

R-KC. X = X + -6 [X + 4X1/2 + X-

B. Double Integration

Double integration is interesting because it illustrates some of the problems

associated with initial conditions and start up. Equation (97) for "n = 2" is

X(s) = s2X(s) - s X - x (115)0 0

and solving for "X(s)", one has

txo

X(s) = + X0 + s0 (116)
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Taking the z-transform of Equation (116),

X(Z) - ( Z( +'(,).(117)

Before proceeding, consider the case where R(t) 0, that is.

X(W - X + X(18

The exact z-transform is

TzX( X
X(z) . Tz + (119)

(t (Z) 1

or, rearranging,

(- Z) X(z) = T z X + (- z)X (120)

Substituting the definition of the z-transform and equating coefficients of like
powers of "z",

X0 . X0 , (121)

X1 -X 0 +T (122)

Xn 2 X n-I 2' n> 1. (123)

It is important to note that the general recurrence, Equation (123), may be first
applied at "n = 2" and DOES NOT apply at "n = 1". As the order of the system
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increases the number of steps before the general recurrence may be applied

increases! For further discussion on this point see Reference 2, in particular,

Appendix D.

With a little mathematical induction one may readily demonstrate that

S=0 + n 'r 1 0 0 (124)

Mathematical induction serves to further illustrate the point made above. In

addition to showing a relationship for "n" is valid for "n + I'" one must also find

some "n" for which it is valid. For equation (124) the smallest such "n" is"n I but,

for Equation (123) it is "n = 2".

Table 11 contains the required approximations convolution and Table 12 the

recurrences. Note how the input enters the startup step, "n=I", in particular for TC.

TABLE 11. CONVOLUTION APPROXIMATIONS FOR DOUBLE INTEGRATION

.'I ( -z) -(-T/2)1

M.V.C.. [X(z 12)

E.C. T2z { -(z) _ RE.C -0_z2  0

T.C. Tz)2 [I(z) - R 1/21

G -Z)

T2 (1+z)[(z,-1I2) - X(-T/2)] +z(X(z)-Xo)
R-KC. 2-
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TABLE 12. RECURRENCES FOR DOUBLE INTEGRATION

x = x
() 0

T 2

M.V.c. X -x 0+ r +-1 R11
1...X = vX o -2 1/2

T2

X 2 - x + T 2 + R 3Xn 1-1 Xn-2 r n-/2 n-] n>1

E.C. X1 - X -+ T o
X = 2 X x +T 2 "" >
n n-1  n-2 n-1 , >1

T.C. X =X + T + 112 T 2
1 0 0 0

X 2 X + Tn

R-KC. X 1 - X 0 k0+T 2 k / + k 0] /6

2
xn  2n 1  n -- [Xn + n-1 + n- , n>l

2 2

C. Single Pole Filter

Now for a bone with a little more meat on it, the single pole filter whose

differential equation is

k (t) = -a X(t) + g(t). (125)

Applying Equation (97), one has

s X(s)-x W -a X(S) + g(s), (126)
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and solving for "X(s)",

g(s) + XX(s) (127)

S + a i

For X. = 0, one would have the transfer function

X(t) _ I 18
g(s) s+ (128)

taking the z-transform of Equation (127),

X(z) =/s)) + X + -a (129) 4

Proceeding as before, one has Tables 13 and 14. Like the single integrator there is

no startup step but note how past values are "decayed" based on how "old" they

are.

A lead-lag, in Equation (130), is sometimes required.

x(S) rIsbA g(s) (130)

To incorporate initial conditions convert Equation (130) back to the time domain,

i(t) + a X(t) - (t) + b g(t), (131)

and then apply Equation (97),

a X(s) -X X(s) - a g(0) g 0 + b g(s) (132)
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TABLE 13. CONVOLUTION APPROXIMATIONS FOR A SINGLE POLE FILTER

z (o')

M.V.C. -aT (g(z, -1/2) - (-T/2))
1-z e

-aTTze g(z)
E.C. (1 - -aT )

T( 1 -aT )

T.C. a(T+ze) fg(z) - go ]

(1-z e

aT

R-KC. T -aT 1(1+z e-aT)g(z) - g + 4e 2(g(x, -1/2) -g(-1/2T))]

6(1 -ze )

TABLE 14. RECURRENCES FOR A SINGLE POLE FILTER

Xo - Xo

-aT *-aT/2

X..C n  - e X n-1+ T e gn-I/

E.C. Xn . e - aT Xn_ + T g e - aT

l n-in-i

-.C.T e-aT

n  n [ g + gn- 1]

R-KC. x =aTx T +4 e -aT/2 +e -aT 1
n =e 6 n T nn-] _2 • n-1J
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and solving Equation (132) for "X(s)"

(s+b) g(s) - g0+ (133
X(S) (133)_________

taking the z-transform of Equation (133),

X (z) - r/ + ( + (X0 -80 ) z+.(14

Noting that

s +b -1  (a-b) ,(135)

s+b S+ a

Equation (134) may be written

X(Z) = g (Z) -Z [( jb~gs]+( - g) z(-- (136)

The approximation required in Equation (136) is the same as the single pole filter
with the coefficient "(a-b)". Table 15 contains the recurrences.

If the lead-lag is of the form,

I +s/b . a Is + bj (137)
1+Ts/a b k ;"+-a

then the recurrences in Table 16 would apply.

If one had the form

Y1+/a aI s +a) (138)
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I

TABLE IS. RECURRENCES FOR A LEAD-LAG FILTER,

aT

M.V.C Xn - T (a-b) eg + aT
2 = n-- In-i- gn-

E.C. Xn ' gn + aT[X_ 1- (I+T(a-b))gn-1]

T.C. Xn = (1-T(a-b)/2) g+ eaT[xn- (+T(a-b)/2)gn]

R-KC. -aT/2

.n=-6(a-b)) gn-3 (a-b)e gn-1/2

+e - aT -(I+ (a-b))

TABLE 16. RECURRENCES FOR A LEAD-LAG FILTER, I+ s/a

M4.V. C. x T - (a - b) e-aTI 2 g 1 )+ eaT Exn~ a ~ 1
n ( a b gn-1/2 n-1 gn-1

E.C. X (1-T (a-b)) gn +e I - - g
n b n nl b n-lj1

a + aT[x a1 + T gY-n = "b n + e n-1 - b( 1n T( -b1n

T.C. X - A (a-b)) gn + eaTn-I - A (I+T (a-b)) g

R-C ( a- ) 2aT (a-b) e - a T / 2

R-KC. Xn = (I - (a-b) gn - 3 ) n-1/2

+e aT [X  a( + (a-b)
n-I- b 6(-4 gn-1
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in Table 16 lot

(a-b) - a , (139)

a (140)

Unfortunately Table 17 does not lend itself to differentiation since the requirement
that "aT<<l" results in slow response. (See Appendix C for some comments on
differentiation.)

TABLE17. RECURRENCE FOR (as)

T aT/2 -aT

M.V.C. Xn = a(g n - aT e gn 1 / 2)+e (Xn - an

E.C. Xn  a (1-aT)gn+ eaT (X -ag)

T.C. n a (1- aT/2 ) gn+ e- aT (Xn 1 -a(1+aT/2) gn- 1 )

R-KC. Xn = a(1 +aT/6) g n- 2a2 Te-aT/2
3

+e-aT (Xn 1 - a (1 + aT/6) gn-1 )
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D. A Forced Damped Oscillator

This problem was discussed in some detail in Reference 2, and only some results
will be presented here. The transfer function

21 2 1>> (141)
s + 2 WS + i °

0 0

is represented as

1 (142)

(s+a) 2+W2

where

a = w (143)

and

W (1-C2)1/2 . (144)

the startup step(s) will be found in Table 18 and the general recurrence(s) in Table

19.

Figure 2 serves to illustrate the difference between the innerconnected integrator

approach, Figure 2(a), and that suggested herein, Figure 2(b). The velocity, "X(s)",
would be found using the single pole filter recurrences, Table 14. Unless "I(s)" and
"X(s)" are needed for some other computation or output, they need not be computed.
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TABLE 18. STARTUP STEP(S) FOR OSCILLATOR

X -X
0 0

eaT (cos aT+Isin wT) X + e -aT sin wT
1  0 w 0....

M.V.C. + Te-aT/ 2  sin wT/2 g

g1/2

E.C. +0

T.C. + T -aT sin wT

T -aT/2

R-KC + -j e sin wT/2 - aT/2[2 g + e cos wT/2 go ]

TABLE 19. GENERAL RECURRENCES FOR OSCILLATOR, n>l

=2e-aT cos wT Xn-1 2aT %-2 ....

M.V.C. + T • - aT/ 2 sioCu12) -aT- ['n-1/2 + e'a gn-3/]

E. C. aT
+Te - a sin wT 8nl

U)

T.C. + Te-T sin WTT.C + T gn-1

+ 2 e-aT/2 sin(fL/2 (&T/1,2 S -aT &a

48L1+ cos WT12 _1,.
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Figure 2a. Interconnected single Integrators.

Y Its)

Figure 2. A fored damped oscillator.
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7. RESULTS AND CONCLUSIONS

The Heaviside unit step and the Dirac delta were shown to be useful in outlining
a proof of the Ragazzini-Zadeh identity. The mean value theorem of the integral
calculus and various numerical integrators were used to develop approximations
of use in the digital simulation of continuous systems. The accuracy of these

approximations was then studied for various inputs to a single integrator. The
inputs considered were a constant, ramp, parabolic, exponential and sine wave.
Recurrences were then developed for single and double integration to illustrate
incorporation of initial conditions. Recurrences for a lead-lag transfer function
and a forced damped oscillator were also presented.

The sample problems were simple to illustrate the approach. The approach has
been applied to the real time digital portion of the hybrid simulation of a high spin
rate air defense missile [11]. The simulation is presently in operation.

Another application would be subroutines of often countered transfer functions
for use in simulation models such as Reference 12.

Further effort on the recommendations[2] is required. It is hoped that in trying to

determine the facts that additional fallacies have not been introduced. Comments
are welcomed.
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APPENDIX A. TRANSFORM TABLE FOR SELECTED
FUNCTIONS' AND DISTRIBUTIONS

*Healy. M.. Tables of Lu4place. Fourier and Z-transforms. London: W. and R. Chambers Ltd.. 1967. Cadzo*, l.A., Disrete-
Time SYstems. Englewood Cliffs. New Jersey,: Prentice Hall, 1973.
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APPENDIX B. DIRAC DELTA DISTRIBUTION
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APPENDIX B. DIRAC DELTA DISTRIBUTION*

J f(t) 8(1: - nT)dt - f(nT) (B-i1)

60

where f(t) is a well-defined funiction at t -nT.

8(t) 5 (-t) (B-2)

N(at) - (1)(B3

Ig (t9) Xlg;(-nT) 1 6( 9(T t - nT), g(nT) - 0 (B-4)

t 8(1:) - 0 (B-5)

f(t)b(t - nT) - f(nT)B(t - nT) (B-6)

f (t - r)b(t - nT)dt - 8(.r - T) (B-7)

b

8(t) f (t)dt -(-1), f (o)(B8

*Dirac, P. A. M., The Principles of Quantum Mechanics, London: Oxford University Press,
1968, Messiah, A., Quantum Mechanics, New York: John Wiley and Sons, 1964.
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APPENDIX C. NUMERICAL DIFFERENTIATION
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Differentiation is to be avoided on analog and digital computers whenever possible,
but there are occasion ...

Equation (97) for "n I " is

and taking the z-transform

k(z) U ZS X(s)) -X(O) .(C-2)

Since

z e St (C-3)

it follows that

S = Qn(1/z) (C-4)

and Equation (C-2) becomes

k(z) = (z -Qn(1/z) X(s)) X(O) .(C-5)

Applying the Ragazzini-Zadeh identity, Equation (C-5) becomes

i(z) =1Qn(i/z) X(z) - X(o) .(C-6)
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One of the possible series for the logarithm is

'n) = (1 - z) (C-7)
n=1 n

and substituting into Equation (C-6) and equating coefficients of like powers of z:

-- 0 (C.8)
0

SX l - X

1 T '(C-9)I
x2 -X 1  (x 2 -X 1 )-(x 1 -x)

X = T + 2T (C-10)

x 3 -X 2  (X 3 - X 2 )-(x-Xl)X= T + 2T

+ [(X3 - x 2 ) - (X 2 - X1 )] - 2- x 1 ) - (X -X (C-Il)

3T

This series was chosen because each term is a finite difference, and there is no attempt
to use any term unless the whole term can be used. That is, for a given "X.,"

n Z)n1-z) (C-12)

ii

Since all past values of "X," are used, a general recurrence never occurs!
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One might truncate the series at one, two or three terms, i.e.,

X - Xx n - T ' n > 0 , (C-13)

-- T X. gn-2 O

3X l*ll2 , n>l1 , (C-14)
n 2T

3IX -18X +9 -2 

11 Xn n-i Xn-2 Xn-3 n 2 (C-15)
n - 6T '

respectively.

Of course, integrators may be developed in a similar fashion (Table C-i).

TABLE C-1 INTEGRATORS VIA LOG APPROXIMATION

fn(l/z) 1 = T -n(i/zf-  CLASSICAL
s NAME

1- z T z Eular

z i-z

T Rectangular

l-z l-z

A1 11 + A
2i -+z 2 k -- ] Trapezoidal

T_ 1 .1-z "  3T (1 + z)3  Simpson's 3/8

+ + . 8( - z)
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Since some checks are warranted, consider the differentiation of a cosine wave.
Equation (C-13) would become

cos ntoT - COS (n -Qi____ C-

which may be reduced to

( in WT/2
WT/2 /sin(nwT -wT/2 (C17

Of course the answer is "-w sin(nwT)".

The mean value theorem of the differential calculus states

- n xn-i 0 O<fl<i. (-
n-l nT -(n-1)T

If in Equation (C-18)

Ti = 112 (C-19)

then in Equation (C-17)

sn wT/2 (C-20)
wT/2

may be interpreted as an amplitude error.
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Since there is tunable integration [5), why not tunable differentiation?

YOi -Z )+ (1 - y)(1 - z) = y I- 2*y)z - (1 - y)z 2(C-21)
Tz T Tz

Invoking the mean value theorem, for a cosine wave

-w sin (nwT - nwTf) =y cos (n + I)wT + (1 - 2y) cos nwT

- 1-y) cos (n - I~T(C-22)

-w [(i wT ) sin nwT + (2y 1( -oWT) cos nw]j (C-23)

and finally

tan rTwT(2y -1) tan wT/2 (C-24)

Therefore

I -12-1 ta WT/
- tan ta T2(C-25)
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or

,v ]/(1 tan r :T" )

1/21 t1 1 / (C-26)

In small angles, "i' T. - i

T 1 - 12 , (C-27)

or

1/2 + rY (C-28)

For any "L, T,"

TABLE C-2 TUNINGS INDEPENDENT OF "wT"

nY

- 1/2 0

0 1/2

112 1

When the other differentiators of interest are checked in a manner similar to
Equation (C-13), Tables (C-3) and (C-4) would resi It. The only difference between
the tableL is one of point of view. When small angle approximations are warranted,
Tables (C-5) and (C-6) are appropriate.

One may conclude that for the first two differentiators, "y = 0" and "-y = I," a
phase shifted interpretation is more appropriate, while for the last two, "n = 2" and
"n = 3," it is not. At the Shannon limit, Table (C-7), the first two are 36% low while
the last two have suffered a serious "phase" error. Differentiation is to be avoided.
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TABLE C4 DIFFERENTIATION OF A COSINE WAVE, wT' i

r)r

0 - l [ o'

( t) j 2-)s ,
- js in ncsT

7'(n 2 - .,j-,, -
1) --

OT)-  -WT

)4 (( =o 3+n w
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TABLE C-7 DIFFERENTIATION OF A COSINE WAVE, wT - 7

1 tn~l)-w s in nwTT z

Tz

(y = 1/) 0W2n i~nT-r2

z 12 y~/ -w (2/i) sin nwT +T/

T

1X(z (n =2) -w (-4/-a) cos nwT

(1 I)n (n =3) -w(20/31) cos nwT
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APPENDIX D. R-K(N) CONVOLUTION
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Simpson's 3/8 integration rule is

3T (1 + Z)O (D-1)
X(z) =k -z (z) + X0

and the ratio for a sine wave input is

[ Cos 3wT/2 + 3 coswTd/2 (D-2)

4\2 sin 3wT/2J

Note the rather poor behavior at wT =27T / 3; BOOM!

One of the forms used in fourth order Runge-Kutta integration is

1 1+z1/3 )3. X(O)
X()=X(z) + - (D-3)

and the ratio for a sine wave input is

I ()T\coswT/2 + 3 cos w/ D4

At the Shannon limit, "wT -7 "the ratio is 1.0202621 ...
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Equation (D-3) may be written

X(Z) =~ [- (T z) I . [3 2 + 3 [Tz2/3] ()+XO

As with R-K(3), Equation (D-5) is a linear combination of trapezoidal integration
and mean value integration but with Yi = 1/3, 2/3 in this case. Therefore

Z18 (S) 8 S [ Z (f (z) f f(0)) + 3 g (z 1 /3) (f (z -./3) - f (-T/3))*

+ 3 g(z, 2/3) (f (z,.-2/3) f f(-2T/3))

+ f(Z) (g(z) -g(O)] (D-6)

R-K(4) Convolution.

Higher order convolutions, R-K(N)C, could be developed in this fashion using
trapezoidol integration/convolution and mean va'ue integration/convolution.
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